Friday 3 June 2016

C Binary Tree with an Example C Code (Search, Delete, Insert Nodes)

Binary tree is the data structure to maintain data into memory of program. There exists many data structures, but they are chosen for usage on the basis of time consumed in insert/search/delete operations performed on data structures.
Binary tree is one of the data structures that are efficient in insertion and searching operations. Binary tree works on O (logN) for insert/search/delete operations.
Binary tree is basically tree in which each node can have two child nodes and each child node can itself be a small binary tree. To understand it, below is the example figure of binary tree.
Binary tree works on the rule that child nodes which are lesser than root node keep on the left side and child nodes which are greater than root node keep on the right side. Same rule is followed in child nodes as well that are itself sub-trees. Like in above figure, nodes (2, 4, 6) are on left side of root node (9) and nodes (12, 15, 17) are on right side of root node (9).
We will understand binary tree through its operations. We will cover following operations.
  • Create binary tree
  • Search into binary tree
  • Delete binary tree
  • Displaying binary tree

Creation of binary tree

Binary tree is created by inserting root node and its child nodes. We will use a C programming language for all the examples. Below is the code snippet for insert function. It will insert nodes.
11 void insert(node ** tree, int val) {
12 node *temp = NULL;
13 if(!(*tree)) {
14   temp = (node *)malloc(sizeof(node));
15   temp->left = temp->right = NULL;
16   temp->data = val;
17   *tree = temp;
18   return;
19 }
20
21 if(val < (*tree)->data) {
22      insert(&(*tree)->left, val);
23   } else if(val > (*tree)->data) {
24     insert(&(*tree)->right, val);
25   }
26 }
This function would determine the position as per value of node to be added and new node would be added into binary tree. Function is explained in steps below and code snippet lines are mapped to explanation steps given below.
[Lines 13-19] Check first if tree is empty, then insert node as root.
[Line 21] Check if node value to be inserted is lesser than root node value, then
  • a. [Line 22] Call insert() function recursively while there is non-NULL left node
  • b. [Lines 13-19] When reached to leftmost node as NULL, insert new node.
[Line 23] Check if node value to be inserted is greater than root node value, then
  • a. [Line 24] Call insert() function recursively while there is non-NULL right node
  • b. [Lines 13-19] When reached to rightmost node as NULL, insert new node.

Searching into binary tree

Searching is done as per value of node to be searched whether it is root node or it lies in left or right sub-tree. Below is the code snippet for search function. It will search node into binary tree.
46 node* search(node ** tree, int val) {
47 if(!(*tree)) {
48   return NULL;
49  }
50 if(val == (*tree)->data) {
51   return *tree;
52  } else if(val < (*tree)->data) {
53    search(&((*tree)->left), val);
54  } else if(val > (*tree)->data){
55    search(&((*tree)->right), val);
56  }
57 }
This search function would search for value of node whether node of same value already exists in binary tree or not. If it is found, then searched node is returned otherwise NULL (i.e. no node) is returned. Function is explained in steps below and code snippet lines are mapped to explanation steps given below.
  1. [Lines 47-49] Check first if tree is empty, then return NULL.
  2. [Lines 50-51] Check if node value to be searched is equal to root node value, then return node
  3. [Lines 52-53] Check if node value to be searched is lesser than root node value, then call search() function recursively with left node
  4. [Lines 54-55] Check if node value to be searched is greater than root node value, then call search() function recursively with right node
  5. Repeat step 2, 3, 4 for each recursion call of this search function until node to be searched is found.

Deletion of binary tree

Binary tree is deleted by removing its child nodes and root node. Below is the code snippet for deletion of binary tree.
38 void deltree(node * tree) {
39 if (tree) {
40   deltree(tree->left);
41   deltree(tree->right);
42   free(tree);
43  }
44 }
This function would delete all nodes of binary tree in the manner – left node, right node and root node. Function is explained in steps below and code snippet lines are mapped to explanation steps given below.
[Line 39] Check first if root node is non-NULL, then
  • a. [Line 40] Call deltree() function recursively while there is non-NULL left node
  • b. [Line 41] Call deltree() function recursively while there is non-NULL right node
  • c. [Line 42] Delete the node.

Displaying binary tree

Binary tree can be displayed in three forms – pre-order, in-order and post-order.
  • Pre-order displays root node, left node and then right node.
  • In-order displays left node, root node and then right node.
  • Post-order displays left node, right node and then root node.
Below is the code snippet for display of binary tree.
28 void print_preorder(node * tree) {
29 if (tree) {
30 printf("%d\n",tree->data);
31 print_preorder(tree->left);
32 print_preorder(tree->right);
33 }
34 }
35 void print_inorder(node * tree) {
36 if (tree) {
37 print_inorder(tree->left);
38 printf("%d\n",tree->data);
39 print_inorder(tree->right);
40 }
41 }
42 void print_postorder(node * tree) {
43 if (tree) {
44 print_postorder(tree->left);
45 print_postorder(tree->right);
46 printf("%d\n",tree->data);
47 }
48 }
These functions would display binary tree in pre-order, in-order and post-order respectively. Function is explained in steps below and code snippet lines are mapped to explanation steps given below.
Pre-order display
  • a. [Line 30] Display value of root node.
  • b. [Line 31] Call print_preorder() function recursively while there is non-NULL left node
  • c. [Line 32] Call print_preorder() function recursively while there is non-NULL right node
In-order display
  • a. [Line 37]Call print_inorder() function recursively while there is non-NULL left node
  • b. [Line38] Display value of root node.
  • c. [Line 39] Call print_inorder() function recursively while there is non-NULL right node
Post-order display
  • a. [Line 44] Call print_postorder() function recursively while there is non-NULL left node
  • b. [Line 45] Call print_postorder() function recursively while there is non-NULL right node
  • c. [Line46] Display value of root node.

Working program

It is noted that above code snippets are parts of below C program. This below program would be working basic program for binary tree.
#include<stdlib.h>
#include<stdio.h>

struct bin_tree {
int data;
struct bin_tree * right, * left;
};
typedef struct bin_tree node;

void insert(node ** tree, int val)
{
    node *temp = NULL;
    if(!(*tree))
    {
        temp = (node *)malloc(sizeof(node));
        temp->left = temp->right = NULL;
        temp->data = val;
        *tree = temp;
        return;
    }

    if(val < (*tree)->data)
    {
        insert(&(*tree)->left, val);
    }
    else if(val > (*tree)->data)
    {
        insert(&(*tree)->right, val);
    }

}

void print_preorder(node * tree)
{
    if (tree)
    {
        printf("%d\n",tree->data);
        print_preorder(tree->left);
        print_preorder(tree->right);
    }

}

void print_inorder(node * tree)
{
    if (tree)
    {
        print_inorder(tree->left);
        printf("%d\n",tree->data);
        print_inorder(tree->right);
    }
}

void print_postorder(node * tree)
{
    if (tree)
    {
        print_postorder(tree->left);
        print_postorder(tree->right);
        printf("%d\n",tree->data);
    }
}

void deltree(node * tree)
{
    if (tree)
    {
        deltree(tree->left);
        deltree(tree->right);
        free(tree);
    }
}

node* search(node ** tree, int val)
{
    if(!(*tree))
    {
        return NULL;
    }

    if(val < (*tree)->data)
    {
        search(&((*tree)->left), val);
    }
    else if(val > (*tree)->data)
    {
        search(&((*tree)->right), val);
    }
    else if(val == (*tree)->data)
    {
        return *tree;
    }
}

void main()
{
    node *root;
    node *tmp;
    //int i;

    root = NULL;
    /* Inserting nodes into tree */
    insert(&root, 9);
    insert(&root, 4);
    insert(&root, 15);
    insert(&root, 6);
    insert(&root, 12);
    insert(&root, 17);
    insert(&root, 2);

    /* Printing nodes of tree */
    printf("Pre Order Display\n");
    print_preorder(root);

    printf("In Order Display\n");
    print_inorder(root);

    printf("Post Order Display\n");
    print_postorder(root);

    /* Search node into tree */
    tmp = search(&root, 4);
    if (tmp)
    {
        printf("Searched node=%d\n", tmp->data);
    }
    else
    {
        printf("Data Not found in tree.\n");
    }

    /* Deleting all nodes of tree */
    deltree(root);
}
Output of Program:
It is noted that binary tree figure used at top of article can be referred to under output of program and display of binary tree in pre-order, in-order and post-order forms.
$ ./a.out
Pre Order Display
9
4
2
6
15
12
17
In Order Display
2
4
6
9
12
15
17
Post Order Display
2
6
4
12
17
15
9
Searched node=4

Implementation of Hamming Code

Implementation of Hamming Code


C program

  1. #include<stdio.h>
  2. #include<conio.h>
  3. void main() {
  4. int data[7],rec[7],i,c1,c2,c3,c;
  5. printf("this works for message of 4bits in size \nenter message bit one by one: ");
  6. scanf("%d%d%d%d",&data[0],&data[1],&data[2],&data[4]);
  7. data[6]=data[0]^data[2]^data[4];
  8. data[5]=data[0]^data[1]^data[4];
  9. data[3]=data[0]^data[1]^data[2];
  10. printf("\nthe encoded bits are given below: \n");
  11. for (i=0;i<7;i++) {
  12. printf("%d ",data[i]);
  13. }
  14. printf("\nenter the received data bits one by one: ");
  15. for (i=0;i<7;i++) {
  16. scanf("%d",&rec[i]);
  17. }
  18. c1=rec[6]^rec[4]^rec[2]^rec[0];
  19. c2=rec[5]^rec[4]^rec[1]^rec[0];
  20. c3=rec[3]^rec[2]^rec[1]^rec[0];
  21. c=c3*4+c2*2+c1 ;
  22. if(c==0) {
  23. printf("\ncongratulations there is no error: ");
  24. } else {
  25. printf("\nerron on the postion: %d\nthe correct message is \n",c);
  26. if(rec[7-c]==0)
  27. rec[7-c]=1; else
  28. rec[7-c]=0;
  29. for (i=0;i<7;i++) {
  30. printf("%d ",rec[i]);
  31. }
  32. }
  33. getch();
  34. }

Output